publication

Interventional respiratory motion compensation by simultaneous fluoroscopic and nuclear imaging: a phantom study

Dietze, Martijn M A, Kunnen, Britt, Lam, Marnix G E H, de Jong, Hugo W A M

DOI: https://doi.org/10.1088/1361-6560/abe556

Physics in Medicine and Biology 66 (6),

Abstract

Purpose A compact and mobile hybrid c-arm scanner, capable of simultaneously acquiring nuclear and fluoroscopic projections and SPECT/CBCT, was developed to aid fluoroscopy-guided interventional procedures involving the administration of radionuclides (e.g. hepatic radioembolization). However, as in conventional SPECT/CT, the acquired nuclear images may be deteriorated by patient respiratory motion. We propose to perform compensation for respiratory motion by extracting the motion signal from fluoroscopic projections so that the nuclear counts can be gated into motion bins. The purpose of this study is to quantify the performance of this motion compensation technique with phantom experiments. Methods Anthropomorphic phantom configurations that are representative of distributions obtained during the pre-treatment procedure of hepatic radioembolization were placed on a stage that translated with three different motion patterns. Fluoroscopic projections and nuclear counts were simultaneously acquired under planar and SPECT/CBCT imaging. The planar projections were visually assessed. The SPECT reconstructions were visually assessed and quantitatively assessed by calculating the activity recovery of the spherical inserts in the phantom. Results The planar nuclear projections of the translating anthropomorphic phantom were blurry when no motion compensation was applied. With motion compensation, the nuclear projections became representative of the stationary phantom nuclear projection. Similar behavior was observed for the visual quality of SPECT reconstructions. The mean error of the activity recovery in the uncompensated SPECT reconstructions was 15.8±0.9% for stable motion, 11.9±0.9% for small variations, and 11.0±0.9% for large variations. When applying motion compensation, the mean error decreased to 1.8±1.6% for stable motion, 2.2±1.5% for small variations, and 5.2±2.5% for large variations. Conclusion A compact and mobile hybrid c-arm scanner, capable of simultaneously acquiring nuclear and fluoroscopic projections, can perform compensation for respiratory motion. Such motion compensation results in sharper planar nuclear projections and increases the quantitative accuracy of the SPECT reconstructions.