publication

Evaluation Metrics for Augmented Reality in Neurosurgical Preoperative Planning, Surgical Navigation, and Surgical Treatment Guidance: A Systematic Review

Kos, Tessa M, Colombo, Elisa, Bartels, L Wilbert, Robe, Pierre A, van Doormaal, Tristan P C

DOI: https://doi.org/10.1227/ons.0000000000001009

Operative Neurosurgery 26 (5), p. 491-501

Abstract

BACKGROUND AND OBJECTIVE: Recent years have shown an advancement in the development of augmented reality (AR) technologies for preoperative visualization, surgical navigation, and intraoperative guidance for neurosurgery. However, proving added value for AR in clinical practice is challenging, partly because of a lack of standardized evaluation metrics. We performed a systematic review to provide an overview of the reported evaluation metrics for AR technologies in neurosurgical practice and to establish a foundation for assessment and comparison of such technologies.

METHODS: PubMed, Embase, and Cochrane were searched systematically for publications on assessment of AR for cranial neurosurgery on September 22, 2022. The findings were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

RESULTS: The systematic search yielded 830 publications; 114 were screened full text, and 80 were included for analysis. Among the included studies, 5% dealt with preoperative visualization using AR, with user perception as the most frequently reported metric. The majority (75%) researched AR technology for surgical navigation, with registration accuracy, clinical outcome, and time measurements as the most frequently reported metrics. In addition, 20% studied the use of AR for intraoperative guidance, with registration accuracy, task outcome, and user perception as the most frequently reported metrics.

CONCLUSION: For quality benchmarking of AR technologies in neurosurgery, evaluation metrics should be specific to the risk profile and clinical objectives of the technology. A key focus should be on using validated questionnaires to assess user perception; ensuring clear and unambiguous reporting of registration accuracy, precision, robustness, and system stability; and accurately measuring task performance in clinical studies. We provided an overview suggesting which evaluation metrics to use per AR application and innovation phase, aiming to improve the assessment of added value of AR for neurosurgical practice and to facilitate the integration in the clinical workflow.